Header logo is


2020


no image
Semi-Supervised Learning of Multi-Object 3D Scene Representations

Elich, C., Oswald, M. R., Pollefeys, M., Stueckler, J.

CoRR, abs/2010.04030, 2020 (article)

Abstract
Representing scenes at the granularity of objects is a prerequisite for scene understanding and decision making. We propose a novel approach for learning multi-object 3D scene representations from images. A recurrent encoder regresses a latent representation of 3D shapes, poses and texture of each object from an input RGB image. The 3D shapes are represented continuously in function-space as signed distance functions (SDF) which we efficiently pre-train from example shapes in a supervised way. By differentiable rendering we then train our model to decompose scenes self-supervised from RGB-D images. Our approach learns to decompose images into the constituent objects of the scene and to infer their shape, pose and texture from a single view. We evaluate the accuracy of our model in inferring the 3D scene layout and demonstrate its generative capabilities.

link (url) [BibTex]

2020

link (url) [BibTex]


no image
Visual-Inertial Mapping with Non-Linear Factor Recovery

Usenko, V., Demmel, N., Schubert, D., Stückler, J., Cremers, D.

IEEE Robotics and Automation Letters (RA-L), 5, 2020, accepted for presentation at IEEE International Conference on Robotics and Automation (ICRA) 2020, to appear, arXiv:1904.06504 (article)

Abstract
Cameras and inertial measurement units are complementary sensors for ego-motion estimation and environment mapping. Their combination makes visual-inertial odometry (VIO) systems more accurate and robust. For globally consistent mapping, however, combining visual and inertial information is not straightforward. To estimate the motion and geometry with a set of images large baselines are required. Because of that, most systems operate on keyframes that have large time intervals between each other. Inertial data on the other hand quickly degrades with the duration of the intervals and after several seconds of integration, it typically contains only little useful information. In this paper, we propose to extract relevant information for visual-inertial mapping from visual-inertial odometry using non-linear factor recovery. We reconstruct a set of non-linear factors that make an optimal approximation of the information on the trajectory accumulated by VIO. To obtain a globally consistent map we combine these factors with loop-closing constraints using bundle adjustment. The VIO factors make the roll and pitch angles of the global map observable, and improve the robustness and the accuracy of the mapping. In experiments on a public benchmark, we demonstrate superior performance of our method over the state-of-the-art approaches.

[BibTex]

[BibTex]

2015


no image
Efficient Dense Rigid-Body Motion Segmentation and Estimation in RGB-D Video

Stueckler, J., Behnke, S.

International Journal of Computer Vision (IJCV), 113(3):233-245, 2015 (article)

link (url) DOI [BibTex]

2015

link (url) DOI [BibTex]