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Figure 1: Unconstrained motion capture using our new Sparse Inertial Poser (SIP). With as few as 6 IMUs attached to the body, we recover
the full pose of the subject. The key idea that makes this possible is to optimise all the poses of a statistical body model for all the frames in
the sequence jointly to fit the orientation and acceleration measurements captured by the IMUs. Images are shown for reference but are not
used during the optimisation.

Abstract
We address the problem of making human motion capture in the wild more practical by using a small set of inertial sensors
attached to the body. Since the problem is heavily under-constrained, previous methods either use a large number of sensors,
which is intrusive, or they require additional video input. We take a different approach and constrain the problem by: (i) making
use of a realistic statistical body model that includes anthropometric constraints and (ii) using a joint optimization framework
to fit the model to orientation and acceleration measurements over multiple frames. The resulting tracker Sparse Inertial Poser
(SIP) enables motion capture using only 6 sensors (attached to the wrists, lower legs, back and head) and works for arbitrary
human motions. Experiments on the recently released TNT15 dataset show that, using the same number of sensors, SIP achieves
higher accuracy than the dataset baseline without using any video data. We further demonstrate the effectiveness of SIP on newly
recorded challenging motions in outdoor scenarios such as climbing or jumping over a wall.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

The recording of human motion has revolutionized the fields of
biomechanics, computer animation, and computer vision. Human
motion is typically captured using commercial marker-based sys-
tems such as [Vic] or [Sim], and numerous recordings of human
performances are now available (e.g., [CMU], [Mix], [Mov]). The
recording of human motion is also important for psychology and

medicine, where biomechanical analysis can be used to assess
physical activity and diagnose pathological conditions and monitor
post-operative mobility of patients. Unfortunately, marker-based
systems are intrusive and restrict motions to controlled laboratory
spaces. Therefore, activities such as skiing, biking or simple daily
activities like having coffee with friends cannot be recorded with
such systems. The vision community has seen significant progress
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in the estimation of 3D human pose from images, but this typi-
cally involves multi-camera calibrated systems, which again limit
applicability. Existing methods for estimating 3D human pose from
single images, e.g. [BKL∗16], are still less accurate than motion
capture systems. However, to record human motion in everyday sit-
uations and in natural settings one would need a dedicated camera
to track a specific subject. Hence, it is unlikely that vision-based
systems will be able to record large amounts of continuous daily
activity data.

Systems based on Inertial Measurement Units (IMUs) do not
suffer from such limitations; they can track the human pose with-
out cameras which make them more suitable for outdoor record-
ings, scenarios with occlusions, baggy clothing or where tracking
with a dedicated camera is simply not possible. However, inertial
measurement systems such as Xsens BioMech [Xse] are quite in-
trusive, requiring 17 sensors worn on the body or attached to a suit.
This is one of the reasons that large amounts of data have not been
recorded yet. Hence, a less intrusive solution that can capture peo-
ple through occlusions is needed.

In this paper, we present the Sparse Inertial Poser (SIP), a
method to recover the full 3D human pose from only 6 IMUs.
Six sensors, measuring orientation and acceleration are attached
to the wrists, lower legs, waist and head, resulting in a minimally
intrusive solution to capture human activities. Furthermore, many
consumer products already have IMUs integrated, e.g., fitness and
smartwatches, smartphones, Google glasses and Oculus rift. Our 6-
sensor system could easily be worn with a hat or glasses, two wrist
bands, a belt, and shoe or ankle sensors. However, recovering hu-
man pose from only 6 IMUs is a very difficult task. Orientation at
the extremities and waist only provides a weak constraint on the
human motion and incorporation of acceleration data is usually af-
fected by drift.

To solve this problem, we exploit the rich statistical SMPL body
model [LMR∗15]. One key insight is that the body model can be
fit to incomplete and ambiguous data because it captures informa-
tion about the kinematic constraints of the human body. A similar
observation has been made by [TST∗15] and [TBC∗16] who lever-
aged a statistical model for hand pose tracking. Unfortunately, this
alone is not sufficient to compensate for drift. Most previous meth-
ods (e.g. [RLS07,VAV∗07]) integrate acceleration frame by frame,
which results in unstable estimates when using very few sensors.
Optimizing frame by frame is similar to a double explicit inte-
gration scheme, which is known to be unstable and only accurate
within small time intervals.

We take a different approach and optimize all the poses of all
the frames of a sequence at once. Hence, our objective function
enforces the coherency between the body model orientation and
acceleration estimates against the IMU recordings. Effectively, the
realistic body model simplifies the estimation problem, providing
sufficient constraints to solve the problem from sparse measure-
ments, even for complex movements. Some examples are shown in
Fig. 1.

In several experiments we show that SIP, while simple, is very
powerful and can recover all the poses of a sequence as a result
of a single optimization. We report results on the recently released
TNT15 dataset [MPMR16] which features 4 subjects wearing 10

IMUs performing a variety of human actions. To evaluate SIP we
use 6 IMUs for tracking and 4 IMUs for validation. We compare to
two baselines, namely an orientation-only tracker that uses only the
orientation information and a variant of SIP that uses a different hu-
man body model. Qualitative and quantitative results demonstrate
that SIP is significantly more accurate than the baselines. To further
demonstrate the applicability of SIP, we present additional tracking
results of two subjects wearing 6 IMUs in an outdoor setting (see
Fig. 1).

In summary, SIP makes the challenging problem of human pose
estimation from sparse IMU data feasible by:

• Making use of a realistic body model that incorporates anthro-
pomorphic constraints (with a skeletal rig).

• A joint optimization framework that fits the poses of a body
model to the orientation and acceleration measurements over
multiple frames.

Altogether SIP is the first method that is able to estimate the 3D
human pose from only 6 IMUs without relying on databases of
MoCap or learning methods that make strong assumptions about
the recorded motion.

2. Related Work

The literature on human pose estimation from images is vast and
in this paper we focus only on methods integrating multiple sen-
sor modalities and methods predicting full pose from sparse low
dimensional control signals.

2.1. Database retrieval and learning based methods

Some work has focused on recovering full pose from sparse incom-
plete sensor signals. In [SH08, TZK∗11] they reconstruct human
pose from 5 accelerometers by retrieving pre-recorded poses with
similar accelerations from a database. Acceleration data is however
very noisy and the space of possible accelerations is huge which
makes learning a very difficult task. A somewhat easier problem
is addressed in [CH05]; they reconstruct full 3D pose from a set
of sparse markers attached at the body. They build online local
PCA models using the sparse marker locations as input to query the
database of human poses. This approach works well since the 5-10
marker locations can constrain the pose significantly; furthermore
the mapping from 3D locations to pose is much more direct than
from acceleration data. Unfortunately, this approach is restricted
to a lab with cameras capturing the reflective markers. Following
similar ideas, in [LWC∗11] they regress to full pose using online
local models but using 6 IMUs to query the database. In [SMN09]
they directly regress full pose using only 4 IMUs with Gaussian
Process regression. Both methods report very good results when
the test motions are present in the database. In [HKP∗16] they ex-
tract gait parameters using deep convolutional neural networks. Al-
though pre-recorded human motion greatly constrains the problem,
methods that heavily rely on pre-recorded data are limited; in par-
ticular capturing arbitrary activities is difficult if it is missing in the
databases.
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2.2. Full-body IMU MoCap

There exist commercial solutions for human motion capture from
IMUs; [RLS07] use 17 IMUs equipped with 3D accelerometers,
gyroscopes and magnetometers and all the measurements are fused
using a Kalman Filter. By achieving stable orientation measure-
ments the 17 IMUs completely define the pose of the subject. How-
ever it is very intrusive for a subject to wear them, and long setup
times are required. In the seminal work of [VAV∗07] they propose a
custom made system consisting of 18 sensor boards, each equipped
with an IMU and acoustic distance sensors, to compensate for typi-
cal drift in the orientation estimates. While the approach is demon-
strated in challenging outdoor settings like ours, the system is also
very intrusive and difficult to reproduce. Other approaches have
combined sparse IMUs with video input [PMBG∗11,MPMR16] or
sparse optical markers [AHK∗16] to constrain the problem. Simi-
larly [HMST13] combines sparse IMUs with a depth camera. IMUs
are only used to query similar poses in a database and depth data
is used to obtain the full pose. While powerful, using video input
does not allow human movements to be captured with occlusions or
in applications that require continuous activity monitoring. Hence,
instead of constraining the problem using additional sensors, we
constrain the problem by using a statistical body model and opti-
mizing the pose over multiple frames. While 6 IMUs do not provide
enough constraints to determine the full pose for a single frame, we
find that accurate pose estimates can be obtained when integrating
all orientation and acceleration measurements into a single opti-
mization objective.

3. Background

3.1. Exponential Map on SO(3) and SE(3)

In this section we quickly review the concept of exponential map-
ping on the Special Orthogonal Group SO(3) and the Special Eu-
clidean Group SE(3). The exponential map representation provides
a geometric and elegant treatment of rigid body motion, which we
use to relate pose parameters to human body motions. Using the
exponential map has some advantadges for optimization w.r.t. other
representations such as Euler angles [PMR09]; for more details on
the exponential mapping and a comparison to other parameteriza-
tions we refer the reader to [MLSS94, PMR11].

Both SO(3) and SE(3) are Lie groups with an associated
Lie algebra. Throughout this paper we will use the cross-
operator × to construct a Lie algebra element from its coordi-
nates and the vee-operator ∨ to extract the coordinates of a Lie
algebra element into a column vector. The group of rotations
about the origin in 3 dimensions SO(3) is defined as SO(3) =
{R ∈ R3×3 :RT R = I,det(R) = 1}. Every rotation R can be ex-
pressed in exponential form

R = exp(ω×), (1)

where ω
× ∈ so(3) is a skew-symmetric matrix and can be com-

puted analytically using the Rodriguez Formula [MLSS94]. The
three independent parameters ω ∈ R3 of ω

× are called exponen-
tial coordinates of R and define the axis of rotation and ||ω|| is the
angle of rotation about this axis. The group SE(3) represents rigid
body motions composed by a rotation R ∈ SO(3) and translation

(a) (b)

Figure 2: (a) The joints of the skeleton in SMPL are predicted as
a function of the surface. This allows us to obtain accurate joint
locations which are used to predict the acceleration measurements.
(b) Manually rigged models lead to worse performance fitting in-
complete sensor measurements.

t ∈ R3. Any rigid motion G ∈ R4×4 can be written in exponential
form

G =

[
R t
0 1

]
= exp(ξ×), (2)

where ξ
× ∈ se(3) is called the associated twist action and se(3)

refers to the corresponding Lie algebra. The six independent pa-
rameters ξ ∈ R6 of ξ

× are called exponential coordinates of G.
They are composed of the rotational parameters ω∈R3 and v∈R3,
where the latter encodes location of the axis of rotation and trans-
lation along the axis.

The inverse operation of Eq. (1) and Eq. (2) is the logarithm and
recovers a Lie algebra element from a Lie group element. We also
introduce the Taylor expansion of the matrix exponential given by

exp(ξ×) = I+ξ
×+

(ξ×)2

2!
+

(ξ×)3

3!
+ . . . , (3)

and the first-order approximation for the logarithm

log(exp(δω
×)exp(ω×))∨ ≈ δω+ω, (4)

for a small δω ∈ R3.

3.2. SMPL Body Model

SMPL [LMR∗15] is a body model that uses a learned template with
V = 6890 vertices T, and a learned rigged template skeleton. The
actual vertex positions of SMPL are adapted according to identity-
dependent shape parameters and the skeleton pose. The skeletal
structure of the human body is modeled with a kinematic chain con-
sisting of rigid bone segments linked by n = 24 joints. Each joint is
modeled as a ball joint with 3 rotational Degrees of Freedom (DoF),
parametrized with exponential coordinates ω. Including translation,
the pose x is determined by a pose vector of d = 3×24+3= 75 pa-
rameters. The rigid motion GT B(x) of a bone depends on the states
of parent joints in the kinematic chain and can be computed by the
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forward kinematic map GT B : Rd → SE(3):

GT B(x) =

(
∏

j∈I(i)

[
exp(ω×j ) j

~0 1

])
=

(
∏

j∈I(i)
exp
(

ξ
×
j

))
,

(5)
where I(i)⊆ {1, · · · ,n+1} is an ordered set of parent joints, ω j ∈
R3 are the exponential coordinates of the joint rotation, j ∈ R3 is
the joint location and ξ

×
j ∈ se(3) is the twist action of joint j. The

initial offset between the bone and the tracking frame is the identity.

SMPL models body shape variation using shape blend shapes,
that are linearly added to the template mesh. A new subject shape
is typically obtained by adding a linear combination of blendshapes
Si ∈ R3V to the template mesh T′ = T+∑i βiSi. SMPL automat-
ically predicts the joint locations Q = [jT

1 . . . jT
n ]

T as a function of
the surface mesh using a sparse regression matrix Q = JT′. While
the orientation of the limbs do not depend at all on the body joints,
the linear acceleration of a particular part of the body depends on
the joint locations. By using SMPL we can track any shape without
having to manually edit the skeleton, see Figure 2(a).

3.3. IMUs

An Inertial Measurement Unit (IMU) is a device that is com-
monly equipped with 3-axes accelerometers, gyroscopes and mag-
netometers. It measures acceleration, rate of turn and magnetic field
strength with respect to the IMU-aligned sensor coordinate system
FS. Typically, a Kalman Filter is then applied to track the sensor
orientation with respect to a global inertial coordinate system F I .

In order to utilize IMU data together with the body model we
introduce several coordinate systems depicted in Figure 3(a). The
body model is defined in the global tracking coordinate system FG

and each bone segment of the body has a local coordinate system
FB. The map GGB : FB → FG defines the mapping from bone to
tracking coordinate system. Equivalently, GIS : FS → F I defines
the mapping from the local IMU sensor coordinate system FS to
F I . Both global coordinate systems FG and F I are related by the
constant mapping GGI : F I→ FG. In the following we will assume
GGI is known and express all IMU readings in the global tracking
frame FG using the transformation rule

GGS(t) = GGIGIS(t). (6)

For a more detailed description of relating inertial data to other sen-
sor or model coordinate systems we refer the reader to [BHM∗10].
Our aim is to find a pose trajectory such that the motion of a limb
is consistent with IMU acceleration and orientation attached to it.
Thus we need to know the offset between IMU and its correspond-
ing bone coordinate system GBS(t) : FS → FB. We assume that it
is constant as the sensors are tightly attached to the limbs and com-
pute it at the first frame of the tracking sequence according to

GBS = GBG(0)GGS(0). (7)

4. Sparse Inertial Poser

Recovering full pose from only N = 6 IMUs (strapped at lower
arms, lower legs, head and waist) is highly ambiguous. Assuming
no sensor noise, orientation data only constrains the full pose to lie

FT

FB

FS

GIS

GT I

GT B

GBS

F I

(a) (b)

Figure 3: (a) Coordinate frames: Global tracking coordinate
frame FG, Inertial coordinate frame F I , Bone coordinate frame
FB and Sensor coordinate frame FS. (b) Sensor placement at head,
lower legs, wrists and back.
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Figure 4: Y- and Z-coordinates of the left wrist sensor position
(Y pointing upwards) for a jumping jack sequence, which is also
shown in Figure 7. Ground truth positions obtained by tracking
with 10 IMUs, are shown in purple and are almost indistinguish-
able from the estimated sensor positions obtained with SIP (blue).
Using only orientation (yellow) of 6 IMUs provides accurate esti-
mates for some portions of the sequence, but cannot correctly re-
construct the extended, raised arm. Double integrating accelera-
tion values (red) provides only reasonable estimates at the begin-
ning of the sequences and the error accumulates over time.

on a lower dimensional manifold. Acceleration measurements are
noisy and naive double integration to obtain position leads to un-
bounded exponential drift, see Figure 4. Looking at a single frame
the problem is ill-posed. However, looking at the full sequence,
and using anthropometric constraints from a body model, makes
the problem much more constrained, see Figure 5. This motivates
us to formulate the following multi-frame objective function:

x∗1:T = arg min
x1:T

Emotion(x1:T ,R1:T ,a1:T ), (8)
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f rames
f rames

Figure 5: SIP joint optimization: sparse IMUs give only weak con-
straints on the full pose. As illustrated on the left figure, multiple
poses fit well the IMU orientation of the lower left leg. By optimiz-
ing all poses over the sequence we can successfully find the pose
trajectory (shown in orange) that is also consistent with the accel-
eration data as can be seen on the right figure. The joint optimiza-
tion allows the use of acceleration readings, which would produce
severe drift otherwise.

where x1:T ∈ R75T is a vector consisting of stacked model poses
for each time step t = 1 . . .T . R1:T are the sensor orientations
Rt ∈ SO(3) and a1:T are the sensor acceleration measurements re-
spectively. We define Emotion : Rd×T ×R3N×T ×R3N×T → R as

Emotion(x1:T ,ω1:T ,a1:T ) =wori ·Eori(x1:T ,R1:T )

+wacc ·Eacc(x1:T ,a1:T )

+wanthro ·Eanthro(x1:T ),

(9)

where Eori, Eacc and Eanthro are energies related to orientation, ac-
celeration and anthropometric consistency. The weights of Eq. (9)
are fixed during all experiments, see experimental section. In the
following, we detail each of the objective terms.

4.1. The Orientation Term

The sensor orientations, RGS(t) : FS→ FG are related to the bone
orientations by a constant rotational offset RBS. Hence, we define
the estimated sensor orientation R̂GS(xt) at the current pose xt as

R̂GS(xt) = RGB(xt)RBS, (10)

where RGB(xt) is the rotational part of the forward kinematics map
defined in Eq. (5) and RBS. The orientation error eori ∈ R3 are the
exponential coordinates of the rotational offset between estimated
and measured sensor orientation:

eori(xt) = log
(

R̂GS(xt)
(

RGS(t)
)−1

)∨
, (11)

where the ∨-operator is used to extract the coordinates of the skew-
symmetric matrix obtained from the log-operation. We define the
orientation consistency Eori across the sequence as

Eori =
1

T N

T

∑
t=1

N

∑
n=1
||eori,n(t)||2, (12)

which is the sum of squared L2-norm of orientation errors over all
frames t and all sensors n. Actually, the squared L2-norm of eori

corresponds to the geodesic distance between R̂GS(xt) and RGS(t)
[HTDL13, MPMR16].

4.2. The Acceleration Term

IMU acceleration measurements aS are provided in the sensor coor-
dinate system FS shown in Figure 3(a). To obtain the corresponding
sensor acceleration aG in global tracking frame coordinates FG we
have to transform aS by the current sensor orientation RGS(t) and
subtract gravity gG

aG
t = RGS

t aS
t −gG. (13)

We aim to recover a sequence of poses such that the actual sensor
acceleration matches the corresponding vertex acceleration of the
body model. The corresponding vertex is manually selected; since
the model has the same topology across subjects this operation is
done only once. The vertex acceleration âG(t) is approximated by
numerical differentiation

âG
t =

pG
t−1−2pG

t +pG
t+1

dt2 , (14)

where pG
t is the vertex position at time instance t and dt is the

sampling time. The vertex position is related to the model pose x
by the forward kinematic map defined in Eq. (5) and equates to

p̄G(x) = GGB(x)p̄B(0), (15)

where p̄ indicates homogeneous coordinates. Hence, we define the
acceleration error as the difference of estimated and measured ac-
celeration

eacc(t) = âG(xt−1,xt ,xt+1)−aG
t . (16)

Adding up the acceleration error for all T frames and N sensors
defines the motion acceleration consistency Eacc:

Eacc =
1

T N

T

∑
t=1

N

∑
n=1
||eacc,n(t)||2. (17)

4.3. The Anthropometric Term

In order to constrain the skeletal joint states to human-like poses
we use a multivariate Gaussian distribution of model poses with a
mean pose µx and covariance matrix Σx learned from the scan reg-
istrations of SMPL. While this encodes anthropometric constraints
it is not motion specific as it is learned from a variety of static
poses. Note that this is much less restrictive than learning based or
database retrieval based approaches. We use the Mahalanobis dis-
tance that measures the likelihood of a pose x given the distribution
N (µx,Σx):

dmahal =

√
(x−µx)

T
Σ
−1
x (x−µx). (18)

Additionally, we explicitly model joint limits by an error term
which produces repulsive forces if a joint limit is violated. We de-
fine the joint limit error elimit as

elimit = min(x− llower,0)+max(x− lupper,0) (19)

where llower and lupper are lower and upper joint limit parameters.
Altogether, the anthropometric energy term Eantro is a weighted
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(a) (b) (c) (d)

Figure 6: Influence of the anthropometric, orientation and accel-
eration consistency terms. (a) image of a climbing scene (b) us-
ing only orientation without anthropometric consistency term, (c)
using orientation with anthropometric consistency term , (d) our
proposed SIP using anthropometric, orientation and acceleration
consistency terms.

combination of terms

Eanthro = wmahal
1
T

T

∑
t=1

dmahal(t)
2 +wlimit

1
T

T

∑
t=1
||elimit(t)||2 (20)

where the weighting factors wmahal and wlimit balance the influence
of the pose prior term and the joint limits term.

4.4. Energy Minimization

Emotion is a highly non-linear function and generally difficult to
optimize. However, the exponential map formulation enables us
to analytically compute gradients and since Emotion is composed
of a sum of squared residual terms we can use the Levenberg-
Marquardt algorithm. In order to compute an update-step for the
Levenberg-Marquardt algorithm, we have to linearize the residual
terms around the current solution with the Jacobian matrix J. The
Jacobian maps a pose increment δx to an increment of the residual
according to

e(x,δx)≈ e(x)+Jδx. (21)

In the following we show how to linearize the respective resid-
ual terms associated to orientation, acceleration and anthropometric
consistency.

The orientation residual defined in Eq. (11) can be rewritten in
terms of an incremental change of the pose δx such that

eori(x,δx) = log
(

R(δx)R̂GS(x)
(

RGS
)−1

)∨
, (22)

where R(δx) is the rotational part of the forward kinematic map
computed at the current pose x. Using the first-order approximation
for the logarithm of Eq. (4) we get a linearized expression of the
orientation residual according to

eori(x,δx)≈ eori(x)+δeori(δx). (23)

The first term corresponds to the actual orientation residual defined
in Eq. (11) and the latter term is given by

δeori(δx) = Joriδx, (24)

where Jori : Rd → R3 is the articulated Jacobian, mapping an in-
cremental variation of the pose vector to rotational increments in
the tangent space of SO(3), see [PMR11].

In order to linearize the acceleration residual of Eq. (16), we
rewrite the estimated sensor position (Eq. (15)) at a single time
instance in terms of an incremental change in the pose vector δx
according to

p̄(x,δx) = G(δx)GGB(x)p̄(0) = G(δx)p̄(x), (25)

where G(δx) is the forward kinematic map computed at the current
pose x. Using the Taylor expansion (Eq. (3)) of the exponential map
of SE(3) up to the first order we get

p̄(x,δx)≈ p̄(x)+ξ
×
δxp̄(x). (26)

The second term of the previous equation can be rewritten as

ξ
×
δxGGB(x)p̄(0) = Jp(x)δx (27)

where Jp(x) : Rd → R3 is the positional Jacobian at point p(x),
mapping an incremental variation of the pose vector to positional
increments in Cartesian coordinates, see also [PMR11]. By com-
bining the position estimates of three successive time steps we get
the linearized acceleration error according to

eacc(t,δx)≈ eacc(t)+
[
Jp(xt−1) −2Jp(xt ) Jp(xt+1)

] δxt−1
δxt
δxt+1

 .
(28)

The residual terms related to anthropomorphic consistency defined
in Eq. (18) and Eq. (19) are already linear in the pose x. For the
Mahalanobis prior we compute the Cholesky factorization of the
inverse covariance matrix

Σ
−1
x = LT L (29)

and rewrite the squared Mahalanobis distance as

d2
mahal = (x−µx)

T LT L(x−µx) = eT
mahalemahal. (30)

Then it becomes obvious that emahal : x→ L (x−µx) is a linear
mapping with Jmahal = L.

In order to compute a descent update step to minimize Emotion,
we can now simply stack the linearized residual terms for all
frames. For orientation and anthropometric terms this leads to
sparse equations with the following block-diagonal structure

. . .
Jt−1

Jt
Jt+1

. . .





...
δxt−1

δxt
δxt+1

...

=



...
e(t−1)

e(t)
e(t +1)

...

 , (31)

where Jt denotes the respective Jacobian of the residual term e(t)
at time step t. Similarly, the linearized residual terms of the accel-
eration residuals can be combined to obtain

. . .
. . .

. . . −2Jt−1 Jt
Jt−1 −2Jt Jt+1

Jt −2Jt+1
. . .

. . .
. . .





...
δxt−1

δxt
δxt+1

...

=



...
eacc(t−1)

eacc(t)
eacc(t +1)

...

 .

(32)
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Figure 7: We show three iterations of the optimization of Emotion
for a jumping jack sequence. First row: images of the scene, sec-
ond row: pose initialization obtained by minimizing orientation and
anthropometric consistency, third row: intermediate iteration, forth
row: result of SIP, i.e. final pose estimates after convergence.

By stacking the respective linearized multi-frame residual terms,
we can now simply solve for the parameter updates and iterate un-
til convergence. Iteration results for a jumping jack sequence are
illustrated in Figure 7.

4.5. IMU placement

Our proposed Sparse Inertial Poser is capable of recovering hu-
man motion from only 6 IMUs strapped to the lower legs, the
lower arms, waist and head, see Figure 3(b). We found that this
sensor configuration constrains a large number of pose parameters
and produces good quantitative and qualitative results (see the sup-
plemental video). An alternative sensor configuration would be to
move the lower-leg and lower-arm IMUs to the end-effectors, i.e.
feet and hands. Theoretically, this would constraint all joint param-
eters of the human body. However, we found that this adds too
much uncertainty along the kinematic chain structure and results
in worse performance than the proposed sensor placement.

5. Experiments

We evaluate here the performance of SIP. In Section 5.1 we present
details on the general tracking procedure and computation times.
Section 5.2 introduces two baseline trackers which we use to com-
pare and evaluate the tracking performance. We provide a quantita-
tive assessment on a publicly available data set in Section 5.3 and
present qualitative results on additional recordings in Section 5.4.
We refer to the video for more results.

5.1. Tracker Setup

In order to reconstruct the full-body motion with our proposed SIP
we require

• A SMPL body model of the actor,
• The initial pose at the beginning of the sequence
• IMU sensor locations on the body.

Initial pose and sensor locations are required to determine the sen-
sor to bone offsets GBS, see Section 3.3. Since IMUs are attached
to different locations on the body, we manually selected the SMPL
vertices once, and use them as sensor locations for all actors and
experiments. Initial poses for the quantitative assessment were pro-
vided by the TNT15 data set. For the outdoor recordings we simply
asked the actor to pose upright with straight arms and legs at the
beginning of each sequence. We obtained SMPL body models by
fitting the SMPL template to laser scans. If laser scans are not avail-
able we can also run SIP with approximate body models estimated
with the method of "bodies from words" [SQRH∗16]. In this case
shape is estimated from only height, weight and 15 user ratings of
the actor body shape.

The general tracking procedure then works as follows. Starting
with the initial pose we optimize pose for every frame sequentially
using the orientation and anthropometric terms. We call this method
Sparse Orientation Poser (SOP) and we use it as a baseline later.
The resultant pose trajectory from SOP serves as initialization for
optimizing the full cost function defined in Eq. (9). As can be seen
in Figure 7, optimizing orientation and anthropometric consistency
terms already recovers the pose reasonably well. This step is im-
portant, since Eq. (9) is highly non-linear and we apply a local,
gradient-based optimization approach. After initialization, we use
a standard Levenberg-Marquardt algorithm to optimize the full cost
cost function and iterate until convergence.

For all experiments, we use the same energy weighting param-
eters listed in Table 1, which have been determined empirically.
The overall processing time for a 1000 frame sequence and 20 cost
function evaluations on a quad-core Intel Core i7 3.5GHz CPU is
7.5 minutes using single-core, non-optimized MATLAB code. For
each iteration the majority of time is spent on updating the body
model (14.4s) and setting up the Jacobians (3.3s), while solving
the sparse equations for a Levenberg-Marquardt update step takes
approximately 1.5s. Parallelization of model updates and Jacobian
entries on the GPU would drastically reduce computation time and
we leave it as future work.

5.2. Baseline Trackers

We compare our tracking results to two baseline methods:
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wori wacc wanthro wmahal wlimits
1 0.05 1 0.003 0.1

Table 1: Weighting parameters of Emotion, which have been used
for all experiments.
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Figure 8: Mean orientation and position error of a jumping jack
sequence of the TNT15 data set. Our proposed SIP (blue) clearly
outperforms both baseline trackers SOP (red) and SIP-M (yellow).

• Sparse Orientation Poser (SOP): Minimizes orientation and an-
thropomorphic consistency terms but disregards acceleration.
• SIP using an alternative body model (SIP-M): Identical to SIP,

but uses a manually rigged body model.

The estimated pose trajectory obtained by SOP is used as the ini-
tialization of our proposed SIP. The second baseline, the SIP-M,
uses a body model provided along the TNT15 data set as de-
picted in Figure 2(b). It is a body model with manually placed
joints and fewer pose parameters. Anatomical constraints are im-
posed by using hinge joints, e.g. for the knee. In total, the body
model has 31 pose parameters and the manual rigging procedure
is representative for models that have been used for tracking so far
(e.g. [VBMP08,PMBG∗11,MPMR16,GSDA∗09]). In contrast, the
SMPL model of SIP uses a statistical model to estimate joint po-
sitions. Every joint has 3 DoFs and anatomical constraints are im-
posed with the covariance of joint parameters. By comparing SIP
and SIP-M we want to asses the significance of using a statistically
learned body model in contrast to a typical hand-rigged one.

We also experimented with a single-frame acceleration tracker,
which combines the SOP approach with acceleration data using a
Kalman filter (similarly as in [VAV∗07, RLS07] but with only 6
sensors). Unfortunately, only 6 IMUs do not provide sufficient con-
straints on the poses to prevent drift caused by acceleration. In all
cases, the tracker got unstable and failed after a few frames.

5.3. Quantitative Results

For a quantitative analysis we evaluate the tracking performance
of our proposed Sparse Inertial Poser (SIP) against the baseline

trackers on the publicly available TNT15 data set published along
[MPMR16]. This data set contains recordings of four subjects per-
forming five activities each and provides inertial sensor data of
10 IMUs attached to lower legs, thighs, lower arms, upper arms,
waist and chest. Additionally, multi-view video is provided which
we only use for visualization purposes. Similar to [MPMR16] we
split the 10 IMUs into tracking and validation sets. IMUs attached
to lower legs, lower arms, waist and chest are used for tracking and
the other IMUs serve as validation sensors.

In order to evaluate the tracking performance we define two error
metrics. On the one hand we use the mean orientation error dori of
the Nv = 4 validation IMUs

dori =
1

T Nv

T

∑
t=1

Nv

∑
n=1
||eori,n(t)||2, (33)

where eori,n is defined in Eq. (11) and T is the number of frames
of the respective sequence. Second we compare the mean position
error dpos of Nm = 13 virtual markers on the body model

dpos =
1

T Nm

T

∑
t=1

Nm

∑
n=1
||pn(t)− p̂n(t)||2 (34)

where p is considered as ground-truth marker position obtained
by tracking with all 10 IMUs and p̂ is the estimated marker po-
sition based on the estimated poses. The virtual marker positions
comprise the SMPL-model joint locations of hips, knees, ankles,
shoulders, elbows, wrists and neck. Since we cannot obtain stable
ground-truth global translation from 10 IMUs alone, we set it to
zero for calculating dpos.

The mean position error is a common metric in video-based hu-
man motion tracking benchmarks (e.g. HumanEva [SBB10], Hu-
man3.6M [IPOS14]) and is partially complementary to the mean
orientation error. While the joint locations might be perfect, a ro-
tation about a bone’s axis does not alter the position error. This is
only visible in the orientation error. On the other hand, a vanish-
ing orientation error of the 4 validation IMUs does not necessarily
imply correct joint positions as the spine or end-effectors might
be incorrectly oriented. Hence, tracking performance is considered
good if both error metrics are small.

Figure 8 shows the tracking errors for a jumping jack sequence of
the TNT15 data set. This sequence contains extended arm and leg
motions, also visible in Figure 7, as well as two foot stamps around
frames 25 and 500. The SOP fails to accurately reconstruct these
motions as orientation measurements of 6 IMUs are too ambiguous.
This is easily illustrated for the case of a foot stamp, which can be
seen in the second column of Figure 12. During this motion the
lower leg is tilted, but without acceleration data it is impossible to
infer whether the thigh was lifted at the same time. The SIP-M can
resolve this ambiguity but the limited body model is not sufficiently
expressive to accurately reconstruct the jumping jacks and skiing
exercises. In contrast our proposed SIP shows low orientation and
position errors for the whole sequence and clearly outperforms both
baseline trackers.

The tracking result of the jumping jack sequence is exemplary
for the overall tracking performances on the TNT15 data set. In
Figure 9 we show the average orientation error for all actors, sep-
arated by activities. Similarly, Figure 10 shows the mean position
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Figure 9: Mean orientation error on the TNT15 data set: compar-
ison of SOP(red), SIP-M(yellow) against our proposed SIP (blue).
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Figure 10: Mean position error on the TNT15 data set: comparison
of SOP(red), SIP-M(yellow) against our proposed SIP (blue).

error. Additionally, Table 2 shows the overall tracking errors on
the TNT15 data set. We have added additional rows for SIP-BW,
SIP-110 and SIP-120. SIP-BW is identical to SIP but uses a SMPL
model estimated with the "bodies from words" approach. The track-
ing error difference is insignificant, which further improves appli-
cability of SIP. Thus, we do not need the accuracy of a laser scan,
making the proposed solution very easy to use. SIP-110 and SIP-
120 use a scaled version of the SIP body model, where body size
was increased by 10% and 20% respectively. Again, the the track-
ing error remains comparably small and it further demonstrates that
SIP is very robust to moderate variations in body shape.

It is remarkable, that SIP-M and SIP achieve a mean orien-
tation error of 18.24◦ and 13.32◦, respectively. [MPMR16] re-
ported an average orientation error of 15.71◦, using 5 IMUs and
8 cameras minimizing single-frame orientation and silhouette con-
sistency terms. SIP-M uses the same body model and is just slightly
worse. Using the SMPL body model in SIP results in an even
smaller orientation error. Thus, without relying on visual cues of
8 cameras we achieve competitive orientation errors by simply tak-
ing IMU accelerations into account and optimizing over all frames
simultaneously.

Quantitative results demonstrate that accurate full-body motion
tracking with sparse IMU data becomes feasible by incorporating
acceleration data. In comparison to the SOP which uses only orien-
tation data, our proposed SIP reduces the mean orientation error on
the TNT15 data set from 19.64◦ to 13.32◦ and the mean position
error decreases from 7.2cm to 3.9cm. We have also shown that for
our tracking approach, the statistically learned body model SMPL
leads to more accurate tracking results than using a representative
manually rigged body model. Further, the SMPL model can be even
created using only linguistic ratings, which obviates the need for a

Approach µang[deg] σang[deg] µpos[m] σpos[m]

SOP 19.64 17.35 0.072 0.089
SIP-M 18.24 15.82 0.06 0.053
SIP 13.32 10.13 0.039 0.04
SIP-BW 13.45 9.94 0.042 0.04
SIP-110 13.67 10.38 0.046 0.045
SIP-120 14.27 10.6 0.056 0.053

Table 2: Tracking errors on TNT15.

Figure 11: SIP is capable of recovering the handwriting on a
whiteboard. Left figure: image of the writing scene, middle figure:
recovered pose at the end of the handwriting, right figure: recov-
ered wrist motion projected on the whiteboard plane.

laser scan of the person. In Figure 12 we show several example
frames of the tracking results obtained on the TNT15 data set.

5.4. Qualitative Results

In order to further demonstrate the capabilities of our proposed SIP
we recorded additional motions. For all recordings we have used
6 Xsens MTw IMUs [Xse] attached to the lower legs, wrists, head
and back. The sensor placement is illustrated in Figure 2(b). Orien-
tation and acceleration data were recorded at 60Hz and transmitted
wirelessly to a laptop. Additionally, we have captured the motions
with a smartphone camera to qualitatively assess the tracking accu-
racy.

In Figure 13 we show several tracking results for challenging
outdoor motions, such as jumping over a wall, warming exercises,
biking and climbing. For all cases, our proposed SIP approach is
able to successfully track the overall motion. For most of the cases,
the recovered poses are visually accurate using only 6 IMUs. Fi-
nally, in Figure 11 we demonstrate that SIP is capable of recon-
structing the handwriting on a whiteboard. For this experiment,
we attached IMUs to the lower legs, wrists, back and chest and
recorded IMU data while the actor was writing “Eurographics” on a
white board. The resulting wrist motion clearly resembles the hand
writing.

6. Conclusions and Future Work

SIP provides a new method for estimating the pose from sparse
inertial sensors. SIP makes this possible by exploiting a statistical
body model and jointly optimizing pose over multiple frames to fit
both orientation and acceleration data. We further demonstrate that
the approach works even with approximate body models obtained
from a few body word ratings. Quantitative evaluation shows that
SIP can accurately reconstruct human pose accurately, with orien-
tation errors of 13.32 degrees and positional errors of 3.9 cm.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



v. Marcard et al. / Sparse Inertial Poser:Automatic 3D Human Pose Estimation from Sparse IMUs

Figure 12: We compare our proposed SIP to ground truth and two baselines, the Sparse Orientation Poser (SOP), and our SIP with a
manually rigged body model (SIP-M). Top row: images from the TNT dataset sequences, second row: ground truth poses obtained by
tracking with 10 IMUs (for reference), third row: results obtained with SOP, fourth row: results obtained with SIP-M and fifth row: results
obtained with SIP. Best results are obtained with SIP. Without acceleration the pose remains ambiguous for the orientation poser (SOP) and
leads to incorrect estimates, the SIP-M can disambiguate the poses by incorporating acceleration data but suffers from a limited skeletal
model, which prevents the pose from appropriately fitting to the sensor data. Differences are best seen in the supplemental video.

This technology opens up many directions for future research.
While SIP is able to track the full-body pose without drift, global
position estimates still suffer from drift over time. To that end, we
plan to integrate simple physical constraints into the optimisation
such as centre of mass preservation and ground contacts. Exploiting
laws of conservation of energies is very involved whereas model-
ing ground contacts is comparably easier: ground contacts produce
high peaks in the accelerometer signal which are easy to detect.
Temporally fixing the position of body model points is straightfor-
ward to integrate in the proposed cost function and will compensate
drift. However, modeling ground contacts depends on the motion to
be tracked and assumes static friction [AHK∗16]. Other options we
will explore to compensate drift are integrating GPS measurements
(e.g. from a cell carried phone on the body), or visual data from a
body mounted camera [RRC∗16, SPS∗11].

Our current solution can not accurately capture wrist and an-
kle joint parameters due to the IMU placement on the body, see

Figure 3(b) and Section 4.5. While these unobserved parameters
are also optimized within the anthropometric prior, we plan to in-
corporate constraints derived from the 3D world geometry. Also,
instead of using static joint limits in the anthropometric term one
could also incorporate pose-conditioned joint angle limits [AB15]
to obtain physically plausible poses. We further plan to learn human
motion models from captured data in every day situations.

Finally, we would like to extend SIP to capture not only artic-
ulated motion but also soft-tissue motion by leveraging models
of human shape in motion such as [PMRMB15]. SIP provides
the technology to capture human motion with as few as 6 IMUs
which is much less intrusive than existing technologies. There
are many potential applications for this such as virtual reality,
sports analysis, monitoring for health assessment, or recording of
movement for psychological and social studies.
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Figure 13: We show several results obtained using SIP: For most of the cases SIP successfully recovers the full human pose. This will enable
to capture people performing everyday activities in a minimally intrusive way. Results are best seen in the supplemental video.
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J., GROSS M., MATUSIK W., POPOVIĆ J.: Practical motion capture in
everyday surroundings. vol. 26, ACM, p. 35. 2, 3, 8

[VBMP08] VLASIC D., BARAN I., MATUSIK W., POPOVIĆ J.: Articu-
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